Antibacterial and antioxydant activities of origanum compactum essential oil

Antibacterial and antioxydant activities of origanum compactum essential oil

In the present study, essential oil of Origanum compactum was analysed and its chemical composition was identified by gas chromatography coupled to mass spectrometry (GC-MS). Among thirty two assayed constituents, carvacrol (30.53%), thymol (27.50%) and its precursor g-terpinene (18.20%) were found to be the major components. The oil was investigated for its in vitro antibacterial activity against a panel of standard reference strains using well diffusion and broth dilution methods. In solid medium, the oil was found to be remarkably active against all tested strains except Pseudomonas which showed resistance.

Télécharger l'étude complète 

CONTINUER LA LECTURE

Antigenotoxic effects of three essential oils in diploid yeast (saccaromyces cerevisias) after treatments with UVC radiation

Essential oils (EOs) extracted from medicinal plants such as Origanum compactum, Artemisia herba alba and Cinnamomum camphora are known for their beneficial effects in humans. The present study was undertaken to investigate their possible antigenotoxic effects in an eukaryotic cell system, the yeast Saccharomyces cerevisiae. The EOs alone showed some cytotoxicity and cytoplasmic petite mutations, i.e. mitochondrial damage, but they were unable to induce nuclear genetic events. In combination with exposures to nuclear mutagens such as 254-nm UVC radiation, 8-methoxypsoralen (8-MOP) plus UVA radiation and methylmethane sulfonate (MMS), treatments with these EOs produced a striking increase in the amount of cytoplasmic petite mutations but caused a significant reduction in revertants and mitotic gene convertants induced among survivors of the diploid tester strain D7. Télécharger l'étude complète

Screening of antifungal and antibacterial activity of 90 commercial essential oils against 10 pathogens of agronomical importance

Nowadays, the demand for a reduction of chemical pesticides use is growing. In parallel, the development of alternative methods to protect crops from pathogens and pests is also increasing. Essential oil (EO) properties against plant pathogens are well known, and they are recognized as having an interesting potential as alternative plant protection products. In this study, 90 commercially available essential oils have been screened in vitro for antifungal and antibacterial activity against 10 plant pathogens of agronomical importance. Télécharger l'étude complète